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ABSTRACT
Alternating-time Temporal Logic (ATL) [1] is used to reason
about strategic abilities of agents. Aiming at strategies that
can realistically be implemented in software, many variants
of ATL study a setting where strategies may only take avail-
able information into account [7]. Another generalization of
ATL is Probabilistic ATL [4], where strategies achieve their
goal with a certain probability.

We introduce a semantics of ATL that takes into account
both of these aspects. We prove that our semantics allows
simulation relations similar in spirit to usual bisimulations,
and has a decidable model checking problem in the case of
memoryless strategies (for memory-dependent strategies the
problem is undecidable).

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Temporal logic

General Terms
Theory

Keywords
Alternating-time temporal logic, incomplete information, prob-
ability

1. INTRODUCTION
Alternating-time Temporal Logic (ATL) [1] is widely rec-

ognized as a suitable logic to reason about strategic abili-
ties: The operator 〈〈A〉〉ϕ expresses that a coalition A has
a strategy to achieve the goal specified by ϕ. In practice, an
agent also needs to have enough information to implement
the strategy. In a realistic environment, each agent will only
have partial information about the current state of the sys-
tem. This leads to a restriction of the available strategies to
so-called uniform ones [7], where strategies may only take
into account information that is available to the agent. Fur-
ther, the existence of the strategy is not enough, there must
be a way for each agent in the coalition to determine the
correct strategy to follow. If agents are not able to freely
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communicate during the game, it is not guaranteed that
they can “agree” on the same strategy to follow.

In addition to incomplete information, another general-
ization is probabilistic ATL, where strategies are required
to achieve a goal with a certain minimal probability [4].

We introduce a new semantics for ATL that takes both
incomplete information and probabilism into account. In
order to lead to reliable strategies, our treatment of incom-
plete information states rather strict requirements for the
admissible strategies: We demand that there is a determin-
istic way for the agents to determine their strategies for
each goal they want to achieve, given only the (potentially
incomplete) knowledge about the current state of the sys-
tem available to them. However, we allow prior agreement :
Coalitions may agree on a joint set of strategies before the
start of the game.1 This models coalitions where each agent
trusts each other and can rely on information about the
behavior of others. In particular, the setting applies when
agents are jointly developed software programs.

During the game, we assume that agents may only com-
municate with each other using explicit moves. This allows
to handle situations where communication is an integral part
of the problem the agents want to solve, as the study of cryp-
tographic protocols (see [11] and [12] for studies of strate-
gic properties of cryptographic protocols in a game-theoretic
setting). Similarly, we treat storing of information as an ex-
plicit move and therefore focus on memoryless strategies:
Agents only have access to the information they can cur-
rently observe, and not to the entire history of the game. In
order to be able to model storing of information, we allow
infinite game structures. The three main contributions of
this paper are the following:

(i) We propose a new semantics for ATL that takes into
account incomplete information and probabilism at the
same time. We allow agents to reach prior agreement
about the strategies they will use during the game.
We show that when requiring a natural “maximality”
condition of the previously agreed strategies, then in
the classical deterministic, complete-information set-
ting, our semantics is equivalent to standard ATL.

(ii) We define a simulation similar to bisimulations ob-

1As a natural situation where prior agreement is useful, con-
sider a game in which agents are successful only if in some
state while playing, both of them choose the same number.
Then—without communication—the agents do not have a
successful strategy; however if they anticipate this situation
and agree on a number before the game is started, obviously
they can be successful.
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tained for ATL [2]. It allows to specify strategies on a
finite “core” of a structure, but to apply them in the
original infinite one (if such a finite core exists). More
generally, strategies may be defined on a“simple”struc-
ture and can then be applied in a more “complicated”
one, still achieving the same goals. This result paves
the way for software implementations of strategies for
infinite systems. Our simulation may be of indepen-
dent interest, as it can be applied to standard seman-
tics of probabilistic ATL. We are not aware of prior
results on simulations or bisimulations for ATL in the
probabilistic or incomplete-information setting.

(iii) We study the complexity of the model checking prob-
lem for our semantics. We prove that the problem is
decidable for finite structures, which strengthens the
above point of using simulations and finite structures
to represent infinite systems. The model checking prob-
lem is in 3EXPTIME and is 2EXPTIME-hard, but
the complexity drops to PSPACE-complete in the de-
terministic setting. The problem is undecidable for
history-dependent strategies.

Related Work.
There is a rich literature on ATL with incomplete informa-

tion, going back to the initial ATL introduction in [1]. The
notion of uniform strategies that we use was first used in
combination with ATL in [7] (there called incomplete infor-
mation strategies), and studied in detail in [10], which also
discusses methods to identify a correct strategy, and allows
to separate the roles of the coalitions executing and iden-
tifying the strategy. In [16], the model checking complex-
ity of ATL with incomplete information and both history-
dependent and memoryless strategies is studied. Further,
[6] discusses an extension of ATL where it is required that
agents know that they have a strategy, and can identify it.

The goal of the above-mentioned works differs from ours:
We do not consider planning and identifying strategies dur-
ing the run of a game, but study what can be achieved by
coalitions with help of an additional planning phase where
coalitions may reach prior agreement on strategies for joint
goals. This leads to a truth definition that cannot be spec-
ified in a purely local way (i.e., as a function of the game
structure, the state, and the formula alone). To the best of
our knowledge, prior agreement has not been addressed in
combination with ATL before.

Probabilistic ATL has been studied in [3], where the suc-
cess of a coalition’s strategy is measured depending on a
probability measure describing the (likely) actions of the re-
mainder of the agents. In the current paper, we use the
usual pessimistic worst-case assumption about the actions
performed by the opponents of a coalition. In [4], a model
checking algorithm for history-dependent strategies for prob-
abilistic ATL is introduced.

To the best of our knowledge our work is the first studying
ATL with incomplete information in a probabilistic setting.

The structure of the paper is as follows: In Section 2, we
introduce our semantics for ATL, we discuss various aspects
of it in Section 3. Section 4 introduces our notion of simula-
tion, and explains how it allows to transfer previously agreed
strategies. Section 5 contains our results on decidability and
complexity of the model-checking problem. We conclude in
Section 6 with some open questions. A full version of the

paper containing all proofs can be found in [15].

2. PROBABILISTIC ATL∗ WITH INCOMPLETE
INFORMATION

In this section we introduce our semantics for ATL∗. We
first define cuncurrent game structres, which are the objects
that ATL∗ reasons about, and then define formulas. While
both of these definitions are fairly standard, our treatment
of strategies and their collections into “strategy choices” is
novel and forms the heart of our semantics.

2.1 Concurrent Game Structures
The following definition of a concurrent game structure is

based on the one from [1], extended to infinite structures (see
also [11]), a probabilistic setting (see also [4]) and a mech-
anism to deal with incomplete information (see also [10]).
We will give an example in Section 3.

Definition. A concurrent game structure (CGS) is a tuple
C = (Σ, Q, P, π, Δ, δ, eq), where

• Σ is a non-empty, finite set of agents,
• Q is a non-empty set of states,
• P is a finite set of propositional variables,
• π : P → P(Q) is a propositional assignment,
• Δ is a move function assigning to each state q ∈ Q and

agent a ∈ Σ a nonempty set Δ(q, a) of moves available
at state q to agent a. For A ⊆ Σ and q ∈ Q, an (A, q)-
move is a function c which maps each a ∈ A to a move
c(a) ∈ Δ(q, a). A (Σ, q)-move is a total q-move.

• δ is a probabilistic transition function which for each
state q and total q-move c, returns a discrete probabil-
ity distribution δ(q, c) on Q (the state obtained when
in q, all agents perform their move as specified by c),

• eq is an information function eq : {1, . . . , n} × Σ →
P(Q × Q), where n is a natural number, and for each
i ∈ {1, . . . , n} and a ∈ Σ, eq(i, a) is an equivalence
relation on Q. We also call each i ∈ {1, . . . , n} a degree
of information.

A subset A ⊆ Σ is also called a coalition of C. We often
omit “of C” when C is clear from the context. The coalition
Σ \A is denoted with A. We often write Pr (δ(q, c) = q′) for
(δ(q, c)) (q′). The information function eq allows to reason
about incomplete information: Often an agent a will not
have complete information about the current state. Hence
for each agent there is an associated“indistinguishability”re-
lation which is an equivalence relation specifying the states
between which a cannot distinguish. To be able to evalu-
ate strategies with different degrees of information for the
same agent, we specify several relations eq(1, a), . . . , eq(n, a)
for each agent a. For the examples in this paper, we ony
consider the simpler case where each agent has a fixed in-
distinguishability relation, i.e., there is only one degree of
information. In order to simplify the presentation, we will
often omit the information degree when there is only one.

We often write q1 ∼eqi(A) q2 for (q1, q2) ∈ ∩a∈Aeq(i, a)
(i.e., no member of the coalition A can distinguish between
q1 and q2), and write q1 ∼eqi(a) q2 for q1 ∼eqi({a}) q2. C is
deterministic if its transition function δ is (i.e., the probabil-
ity distributions returned by δ assign 1 to a single state and
0 to all others). We say that an agent a in C has complete
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information if eq(i, a) is the equality relation on the state
set for all i. A CGS has complete information if every agent
has. For deterministic structures, we can simplify our defi-
nitions (for example, the notion of a “response,” see below,
is not needed in this case). We omit the simpler definition.

A path in a CGS C is a (possibly infinite) sequence λ of
states in C. With λ[i] we denote the ith state in λ, and with
λ[i,∞] the (possibly infinite) sequence λ[i], λ[i + 1], . . . . To
shorten forthcoming examples, we will often assume that for
each state q there is a propositional variable with the same
name, which is true only in the state q.

2.2 ATL∗ formulas
We now define formulas to describe properties and strate-

gic goals in a CGS. Our syntax is identical to ATL∗ ([1]),
with the addition of degrees of information and probabilities.

Definition. Let C be a CGS with n degrees of information.
Then the set of ATL∗-formulas for C is defined as follows:

• A propositional variable of C is a state formula for C,
• conjunctions and negations of state (path) formulas for

C are state (path) formulas for C,
• if A is a coalition, 1 ≤ i ≤ n, 0 ≤ α ≤ 1, and � is

one of ≤, <,≥, >, and ψ is a path formula for C, then
〈〈A〉〉�α

i ψ is a state formula for C,
• if A is a coalition, 1 ≤ i ≤ n, and ψ is a state formula

for C, then KA
i ψ is a state formula for C,

• every state formula for C is a path formula for C,
• If ϕ1 and ϕ2 are path formulas for C, then Xϕ1 and

ϕ1Uϕ2 are path formulas for C.

The operator 〈〈.〉〉 is called strategy operator. Intuitively,

〈〈A〉〉�α
i ϕ means that the agents in A have a strategy mak-

ing ϕ true with probability � α, where for the strategy,
the agents may only access the knowledge available to them
in information degree i, and “knowing” a strategy refers to
a possible prior agreement between the agents in A. An
ATL∗-formula is a state formula unless specified otherwise.
We define the usual abbreviations, i.e., ϕ∨ψ = ¬(¬ϕ∧¬ψ),
�ϕ = trueUϕ, and �ϕ = ¬�¬ϕ. We also simply write 〈〈a〉〉
instead of 〈〈{a}〉〉, etc. We say that a 〈〈.〉〉i-formula is one

whose outmost operator is 〈〈A〉〉�α
i for some coalition A, and

some � α, etc. The set ag(ϕ) is the set of agents mentioned
in the formula ϕ, i.e., it contains the agent a ∈ Σ if and only
if a ∈ A for some coalition A such that 〈〈A〉〉 or KA appears
in ϕ. In a CGS with only one degree of information, we of-
ten omit the i subscript of the strategy operator, similarly in
a deterministic CGS we usually omit the probability bound
� α (and understand it to be read as ≥ 1 in deterministic
structures).

2.3 Strategies and Strategy choices
In order for an agent to decide on a suitable move to

achieve a certain goal, strategies are used. A strategy fixes,
for each state, a move to be performed by the correspond-
ing agent. When reasoning about several (possibly contra-
dictory) goals, the question how an agent determines the
correct strategy is also relevant.

Our semantics addresses the following situation: At every
point in time, an agent a may decide (or be instructed to)
attempt to achieve a goal G (which is specified by an ATL∗-
formula) as part of a coalition A′. Before the start of the

game, the coaltion A′ has agreed on a set of strategies to
reach the goal G, where the correct strategy to choose may
depend on the current state of the game. We model this
agreement as a strategy choice. Hence there are two steps in
identifying the move to perform:

1. For a given goal G to be achieved with coalition A′,
the agent a ∈ A′ has to identify the correct strategy.
This is done with a function S assigning each possible
state a strategy. Of course, if states are indistinguish-
able for a, then the same strategy should be picked in
both states—otherwise agent a does not have sufficient
information to determine the strategy defined by S.

2. The strategy obtained in the above is a function that,
in every state, defines a move for an agent a to perform.
Obviously, this move needs to be “legal” (i.e., available
in the state), and the same restriction as above applies:
In order for the agent to be able to follow the strategy,
the same move needs to be picked in states that the
agent cannot distinguish. Such strategies are called
uniform (see also, e.g., [16]).

In the following discussion, recall that in the common case
that we only specify a single indistinguishability relation
for each agent, we can omit the corresponding index i and
merely speak about uniform strategies, etc. Following the
above ideas, the following definition of a strategy is natural.

Definition. Let C be a CGS with state set Q and move
function Δ, and n degrees of information. For an agent a, an
a-strategy in C is a function sa assigning a move to each state
such that sa(q) ∈ Δ(q, a) for each q ∈ Q. For 1 ≤ i ≤ n,
sa is i-uniform, if q1 ∼eqi(a) q2 implies sa(q1) = sa(q2). For
a coalition A, an A-strategy is a family (sa)a∈A, where each
sa is an a-strategy.

As mentioned in the introduction, we only consider mem-
oryless strategies: The action of an agent may only de-
pend on the current state. Usually, ATL∗ allows history-
dependent strategies. Since we allow CGSs to be infinite, our
model canonically allows the treatment of history-dependent
strategies (see Sections 3.2 and 4.2), however the price to
pay is that the important model checking problem becomes
undecidable (see Section 5).

Usually, a strategy for a coalition A is required to work
against “all possible counter-strategies” of A. Since we only
consider memoryless strategies, quantifying over strategies
is strictly weaker than quantifying over all possible “be-
haviours.” Hence we quantify over “responses,” where a re-
sponse to a coalition A is a function r such that for each
t ∈ N and each q ∈ Q, r(t, q) is a (A, q)-move: A response is
an arbitrary reaction to the outcomes of a possible strategy
chosen by A. Given a strategy sA = (sa)a∈A and a response
r to A, the resulting “game” is a Markov process, where
the transition probabilities are determined by the transition
function of the CGS (the moves of the agents in A are fixed
by sA, those by A are fixed by r: When in the t-th step, the
game is in the state q, then an agent a ∈ A perform the move
sa(q), and an agent b ∈ A performs the move (r(t, q))(b)).
Agents in A are not bound by any strategy; they are not
restricted to any uniformity conditions and also may act
differently when the same state is reached twice during a
run of the game. Demanding that a strategy works against

1059



all responses mirrors the usual worst-case assumptions in re-
quiring that strategies are successful even if the opponents
behave completely irrationally (i.e., do not follow any strat-
egy at all). We define the following:

Definition. Let C be a CGS, let sA be an A-strategy, let
r be a response to A. For a set M of paths over C, and a
state q ∈ Q,

Pr (q → M | sA + r)

is the probability that in the Markov process resulting from
C, sA, and r with initial state q, the resulting path is an
element of M .

Strategies allow agents to choose a move in a state. Uni-
form strategies ensure that an agent has sufficient informa-
tion to determine the correct move. As explained above,
agents also have to decide on a strategy for a given goal; we
formalize this using strategy choices.

Definition. Let C be a CGS with state set Q, and let A
be a coalition. A strategy choice for A in C is a function S
such that for each a ∈ A, q ∈ Q, each 〈〈.〉〉i-formula ϕ for
C with ag(ϕ) ⊆ A, S(a, q, ϕ) is an i-uniform a-strategy in C,
and if q1 ∼eqi(a) q2, then S(a, q1, ϕ) = S(a, q2, ϕ).

The purpose of a strategy choice S is to model“prior agree-
ment:” Before the game, the coalition may agree on a set
of suitable strategies to achieve strategic goals specified by
ATL∗-formulas. These strategies are collected in S. When
(during the game) in the state q, the coalition A′ ⊆ A de-
cides (or is instructed to) achieve a goal by ϕ, each agent
a in A′ chooses the strategy S(a, q, ϕ). Hence the resulting
A′-strategy is the family (S(a, q, ϕ))a∈A′ , which (somewhat
abusing notation) we denote with S(A′, q, ϕ). A strategy
choice is allowed to depend on the state to handle situa-
tions in which players have more information at the time
of deciding on a strategy than they have later when imple-
menting it. The uniformity conditions for strategy choices
and strategies ensure that agents have “enough knowledge
to identify and execute” the correct strategy (cp. [9]).

Note that the“amount”of information available to a coali-
tion is defined in the formula (〈〈A〉〉i ϕ specifies that to reach
the goal ϕ, A may access information of degree i, see the
semantics definition below). This allows (by nesting oper-
ators) to express statements like “Coalition A has a high-
knowledge strategy to reach a state where coalition B has a
low-knowledge strategy to achieve ϕ,” even when A and B
are not disjoint.

2.4 Semantics Definition
We now define our semantics. The definition of truth of

formulas is relative to a strategy choice: The question which
strategic goals can be reached clearly depends on the agree-
ments reached by coalitions before the state of the game.

Definition. Let C = (Σ, Q, P, π, Δ, δ, eq) be a CGS, and
let S be a strategy choice for a coalition A in C, let ϕ1, ϕ2 be
state formulas for C, let ψ1, ψ2 be path formulas for C, such
that ag(ϕ1), ag(ϕ2), ag(ψ1), ag(ψ2) ⊆ A, let q ∈ Q, and let
λ be a path over Q. We define

• C, S, q |= p iff q ∈ π(p) for p ∈ P,
• negation and conjunction are handled as usual,
• λ, S |= ϕ1 iff C, S, λ[0] |= ϕ1,

• λ, S |= Xψ1 iff λ[1,∞], S |= ψ1,
• λ, S |= ψ1Uψ2 iff there is some i ≥ 0 such that λ[i,∞], S |=

ψ2 and λ[j,∞], S |= ψ1 for all j < i,
• If ϕ1 = 〈〈A′〉〉�α

i ψ1, then C, S, q |= ϕ1 iff for every
response r to A′, we have
Pr (q → {λ | λ, S |= ψ1} | S(A′, q, ϕ1) + r) � α,

• C, S, q |= KA
i ϕ1 if C, S, q′ |= ϕ1 for all q′ ∈ Q with

q′ ∼eqi(A) q.

The intuitive meaning of C, S, q |= 〈〈A′〉〉�α
i ψ1 is the fol-

lowing: When in the state q, the coalition A′ decides (or
is instructed to) try to achieve the goal ψ1, they follow the
strategies specified by the strategy choice S for ψ1, i.e., the
strategy S(A′, q, ψ1). The uniformity requirements for strat-
egy choices ensure that determining and following this strat-
egy requires the agents to access only information available
to them with the specified degree i. The formula is satisfied
if the thus-selected A′-strategy is successful with probability
� α, for every possible behaviour of the players A′.

The knowledge operator K allows, among other possibil-
ities, to express further requirements about the available

strategies: Consider the formula KA′
i 〈〈A′〉〉�α

i ψ, for which

we introduce the shorthand 〈〈KA′〉〉�α
i . By the above se-

mantics, this formula is true in a state q with respect to a
strategy choice S if and only if the strategies chosen for the
formula ψ by S are successful in every state q′ such that
q′ ∼eqi(A

′) q. The intuition behind using this operator is
that in the state q, the coalition A′ cannot rule out that the
actual state is q′, hence if their chosen strategy is unsuccess-
ful in q′, the coalition A′ cannot be sure about its success in
q either. A similar requirement was made in [16].

Essentially, 〈〈KA′〉〉�α
i expresses that the coalition A′ has

a strategy to ensure that ψ is true with probability � α,
and with information degree i, the coalition can identify on
the correct strategy, each agent can execute the strategy,
and the coalition has sufficient (distributed) knowledge to
“know” that the strategy is successful—note that this does
not imply that every single agent knows this fact (the latter
can be expressed by

V
a∈A Ka

i 〈〈A〉〉�α
i ).

3. EXAMPLE AND DISCUSSION
We provide a short example, for simplicity we only give

a deterministic one. We also show how history-dependent
strategies can be handled in our framework, and discuss a
subtle issue of our semantics.

3.1 An Example
Consider the CGS C shown in Figure 1, which revisits the

classical “blind and lame agent” example: There is a blind
agent a who can turn a switch for a light bulb, but does not
know whether the light is on or off. A second agent b can
see, but cannot influence the switch. Formally, the moves
of agent a are 0 (do nothing), which does not change state,
and 1 (turn the switch), which alternates between the states
“On” to “Off.” The moves for agent b are irrelevant (i.e., dis-
regarded by the transition function). Agent b has complete
information, while for agent a, both states are indistinguish-
able (there only is a single degree of information).

We now evaluate strategies for the formula XOn, i.e., to
turn on the light. Obviously, agent b alone does not have
a strategy to achieve XOn, as b cannot perform a relevant
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action. Since both states are indistinguishable for agent a,
any uniform a-strategy has to perform the same move β ∈
{0, 1} in both the On and the Off state. We first consider
the strategy s1

a, which always performs the move 1 (i.e.,
toggles the switch). Let S1 be the strategy choice that for
the formula XOn returns this strategy.

On

Off

a:1

a:0

a:1

a:0

Figure 1: “Blind
and Lame Agent”

Obviously, the strategy will
be successful in the state Off,
and will fail in the state On.
Since On ∼eq(a) Off, this implies
that C, S1, Off �|= 〈〈Ka〉〉 XOn,
even though the selected strat-
egy would be successful in the
state—a does not have sufficient
information to know that he will
be successful.

Now consider the coalition
A = {a, b}. Since the moves
of b are irrelevant, we use the
same strategy choice as above
(formally, add a dummy move
for b), which is still unsuccess-
ful in the state On. However, the only state q′ with
q′ ∼eq1(A) Off is the state Off itself—hence (since the move
is successful in Off), it follows that C, S1, Off |= 〈〈KA〉〉 XOn.
This expresses that together, the coalition A has enough in-
formation to know that their strategy is successful: When
asked by an external environment whether they have a strat-
egy to turn on the light, in the state Off, they would reply as
follows (when S1 is the previously agreed set of strategies):
Agent a: “If and only if agent b says so.”
Agent b: “Yes.”
When asked the same question in the state On, agent a

has to give the same answer (since he does not know whether
the state is On or Off), and agent b would reply with “No.”
Hence the coalition possesses sufficient knowledge to deter-
mine whether the strategy is successful in both states.

Also note that when considering the strategy choice S0,
that always chooses the move 0 for a instead, the formula
〈〈a〉〉 XOn is satisfied in On, but not in Off. In particular
this establishes the claim made in the introduction: Our
semantics cannot be defined “locally,” without fixing the set
of previously agreed strategies in a strategy choice (also note
that of these two strategy choices, none is strictly “better”
than the other, both are equally valid).

Finally note that strategy choices are free to (somewhat
counter-intuitively) define different strategies for ϕ and for
ϕ ∧ ϕ. In some situations this can be used to model an
external “environment” passing information to the agents,
due to space reasons we do not discuss this issue further.

3.2 History Dependence
ATL∗ usually allows so-called history-dependent strate-

gies, where the action of an agent in a state may depend on
the entire previous history of the game. In our framework,
history-dependence can be expressed by defining a “history-
dependent version” Chst of a given CGS C, which simply
encodes history into the states themselves in the straight-
forward way: States of Chst are sequences of states of C, two
histories are distinguishable if they have different length or
they are distinguishable in at least one position, the defi-
nition of the other components follows canonically. In the
remainder of the paper, Chst will be used as a running ex-

ample and as a means to formally state the undecidability
result in Section 5.

3.3 Maximal Strategy Choices
Our semantics for ATL∗ admits strategy choices satisfying

formulas which intuitively should be “unsatisfiable:”
Consider the CGS C shown in Figure 2. C is a deter-

ministic, complete-information CGS with a single agent a.
In q0, there is a single move leading to q1, in q1, there
are 2 moves leading to q2 or q3 respectively. Define ϕ as
〈〈a〉〉 X¬ 〈〈a〉〉 Xq3. Intuitively, ϕ expresses that there is a
move by a such that in the resulting state, a cannot reach
q3. Intuitively (and in standard ATL∗), ϕ is not satisfied
in q0, since the only available move for a leads to the state
q1, from which the state q3 can be reached by the move
1. However, for the strategy choice S always returning the
strategy that chooses the move 0 in every state, it follows
that C, S, q0 |= ϕ.

q0 q1

q2

q3

a:0

a:0

a:1

Figure 2: Example

Obviously, S is not
interesting, as it fails
to achieve the goal Xq3

(and hence succeeds in
achieving ϕ) deliber-
ately, by choosing an
unsuccessful strategy al-
though a successful one
is available. In partic-
ular, the satisfaction of
ϕ does not allow us to
conclude that there is a
move for a in q0 such
that in the next state,
a cannot reach q3 anymore even when trying2

Usually, one assumes strategy choices to not deliberately
choose “bad” strategies in “innermost” formulas in order to
make “outermost” operators true; it should prioritize “inner-
most” formulas. To formalize this intuition, let sd (ϕ) (the
strategic depth of a formula ϕ) be the maximal nesting de-
gree of strategic operators in ϕ. For a strategy choice S for
a coalition A in a CGS C and a formula ϕ with ag(ϕ) ⊆ A,
with satϕ (S, j) we denote the set of pairs (q, ψ) such that ψ
is a 〈〈.〉〉-subformula of ϕ, sd (ψ) = j, and C, S, q |= ψ. Us-
ing this notation, we can define an order on strategy choices,
where S1 ≤ S2 should mean that S2 does a a better job of
prioritizing formulas with small depth than S1 does.

Definition. Let S1 and S2 be strategy choices for a coali-
tion A in a CGS C, let ϕ be an ATL∗-formula for C with
ag(ϕ) ⊆ A. Then S1 ≤ϕ S2 if 1. satϕ (S1, i) = satϕ (S2, i) for
all i ≤ sd (ϕ), or 2. for the minimal i such that satϕ (S1, i) �=
satϕ (S2, i), we have satϕ (S1, i) � satϕ (S2, i)

The definition captures the above-mentioned intuitive re-
quirement: If S1 ≤ϕ S2, then for the first degree of strategic
depth where S1 and S2 actually differ, S2 satisfies strictly
“more” (either “more formulas,” or the same formulas at

2Note that the example of a coalition A trying to achieve a
situation where it is unable to reach a certain goal is not at
all contrived: A might want to commit to, let’s say, a secret
value. Then a selection of strategies that could—but does
not—violate the commitment is clearly unsatisfying: It is
required that the commitment cannot be violated anymore,
without the assumption of the good-will of A.
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“more states,” or both). Note that clearly, there are strategy
choices S1 and S2 such that neither S1 ≤ϕ S2 nor S2 ≤ϕ S1

is true.
As an example, in the above-described C from Figure 2,

consider the strategy choice S′ which always returns the
strategy that in q0 chooses the move 0 and in q1, chooses
the move 1. It can easily be verified that S ≤ϕ S′.

As usual, a strategy choice S is ≤ϕ-maximal if S ≤ϕ S′ im-
plies S′ ≤ϕ S. In many situations, a restriction to maximal
strategy choices is natural. In particular, for the determin-
istic, complete-information setting, our semantics restricted
to maximal strategy choices is equivalent to the usual se-
mantics of ATL∗ [1]. In the following with C, q |=ATL-ml ϕ,
we mean that the formula ϕ (with all indices i of an 〈〈A〉〉i-
operator removed) is satisfied at the state q of the CGS C
in the standard ATL∗ semantics restricted to memoryless
strategies. The following is very easy to show:

Proposition 3.1. Let C be a deterministic CGS with com-
plete information, let ϕ be a formula for C, and let S be a
≤ϕ-maximal strategy choice for ag(ϕ) in C. Then for all sub-
formulas ψ of ϕ, the following are equivalent: 1. C, S, q |= ψ,
2. C, q |=ATL-ml ψ.

An analogous result also holds when considering proba-
bilistic CGSs and the semantics as defined in [4], restricted
to pure memoryless strategies.

For a natural class of game structures, maximal strategy
choices always exist: We say that a CGS has finite index,
if for every equivalence relation eq(i, a), every equivalence
class has finitely many elements. This criterion is clearly
satisfied by finite CGSs, further if C has finite index, then
Chst has finite index as well. Trivially a CGS with complete
information has finite index. In such CGSs, every strategy
choice can be “enhanced” to obtain a maximal one:

Theorem 3.2. Let C be a CGS with a countable state set
and finite index, let ϕ be a formula for C with ag(ϕ) ⊆ A,
and let S be a strategy choice for A in C. Then there is
a ≤ϕ-maximal strategy choice Smax for A in C such that
S ≤ϕ Smax.

Theorem 3.2 is false without requiring finite index.

4. SIMULATION RELATIONS
Simulations and Bisimulations are often used to relate

structures to one another in a way preserving “interesting”
features: A bisimulation between structures S1 and S2 with
state sets Q1 and Q2 is usually a relation Z ⊆ Q1 × Q2

such that when (q1, q2) ∈ Z, then q1 and q2 satisfy the same
properties (e.g., the same logical formulas). In our case,
a simulation allows to “translate” a strategy choice from
one (potentially “easy”) CGS to another (potentially “com-
plicated”) one. This allows agents to construct their joint
strategy choice on an “easy” structure and apply it in the
“complicated” one (when the description of the simulation
relation itself is of manageable size). This feature is partic-
ularly attractive since model checking for finite structures is
decidable, see Section 5.

Bisimulations for ATL∗ were originally defined in [2] (see
also [13] for a definition which is closer to ours). The ad-
ditional requirements that we make of our simulations are
needed to deal with incomplete information, probabilism,
and explicit strategies:

1. We require certain uniformity conditions similar to the
ones required for strategies and strategy choices,

2. we demand that moves between related states can be
transferred in a deterministic (and uniform) way,

3. we handle probabilities in the natural way,

4. for to transferring strategy choices, our simulations
only need to work for a particular coalition (and then
allows to transfer strategy choices for that coalition).

We only state definitions for (unidirectional) simulations;
a bisimulation analogously can be defined as a relation Z
that is a simulation in both directions simultanously.

4.1 Definition and Properties
We now give the definition of our simulation relation. We

note that for the deterministic case, the definition can be
relaxed (in particular, in that case it is not required that
Z−1 is a function), we omit the details and only treat the
general case. In the following, for a binary relation Z and a
state q, we write Z(q) to denote the set {q′ | (q, q′) ∈ Z}.

Definition. Let C1 and C2 be CGSs with state sets Q1

and Q2, the same set of agents, the same set of proposi-
tional variables, and n degrees of information. Then a re-
lation Z ⊆ Q1 × Q2 is a probabilistic uniform strong alter-
nating simulation for a coalition A from C1 to C2 if there
are functions Δ1→2

(i,a,q1,q2) such that for all (q1, q2) ∈ Z, all

i ∈ {1, . . . , n}, all agents a ∈ A, and all A′ ⊆ A we have
• Propositional equivalence: q1 and q2 satisfy the same

propositional variables,
• for all (A′, q1)-moves c1, the (A′, q2)-move c2 with c2(a) =

Δ1→2
(i,a,q1,q2)(c1(a)) has the Forward Move Property (i =

1, i = 2) and the Backward Move Property (i = 2,

i = 1): For each (A′, qi)-move cA′
i , there is a (A′, qi-

move cA′
i

such that for all q′i ∈ Qi, we have

Pr
“
δ(q1, c1 ∪ cA′

1 ) = q′1
”

= Pr
“
δ(q2, c2 ∪ cA′

2 ) ∈ Z(q′1)
”

.

• Move Uniformity: If (q′1, q
′
2) ∈ Z with q1 ∼eqi

1(a) q′1
and q2 ∼eqi

1(a) q′2, then Δ1→2
(i,a,q1,q2) = Δ1→2

(i,a,q′
1,q′

2),

• Uniformity: for all a ∈ A, and all (q′1, q
′
2) ∈ Z, if

q2 ∼eqi
2(a) q′2, then q1 ∼eqi

1(a) q′1.
• Knowledge Transfer: if q′1 ∼eq1i (A′) q1, then there is

some q′2 ∈ Q2 such that q′2 ∼eq2i (A′) q2 and (q′1, q
′
2) ∈ Z.

• Uniqueness: For all q2 ∈ Q2, there is exactly one
q1 ∈ Q1 with (q1, q2) ∈ Z (i.e., Z−1 : Q2 → Q1 is a
function).

As mentioned above, the requirements in the definition are
naturally needed for dealing with the probabilistic, incomplete-
information setting with prior agreement:

• Propositional equivalence is obviously necessary if Z-
related states should have the same properties.

• The requirement of the existence of Δ1→2
... ensures that

in states related via Z, agents have a method to trans-
fer their moves from C1 to C2 that does not depend
on how other agents act in the same state, and (due
to the move uniformity requirement) only depends on
the equivalence class of the current state; this ensures
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that an agent has enough information to determine the
move suggested by applying the simulation. The exis-
tence of this function, together with the forward and
backward move properties forms the “core” of the sim-
ulation: These requirements ensure that every move
in one of the structures can be “mirrored” in the other
such that for a potential follow-up state q′1 ∈ Q1, the
probability of reaching q′1 in C1 is the same as the one
for reaching a state Z-related to q′1 in C2.

• Uniformity is a basic “compatibility” requirement be-
tween the involved equivalence relations and the rela-
tion Z. It implies that the function Z−1 can be “com-
puted” by the agents in question given their available
information: Given a state q2 of C2, an agent a can de-
termine the equivalence class of Z−1(q2) with respect
to its own indistinguishability relation.

• Knowledge transfer ensures that if (q1, q2) ∈ Z, and a
group of principals cannot distinguish between q1 and
q′1 in the“simulation”C1, then in the“simulated world”
C2 there also is a pair of states (related in the same way
by Z) that the principals cannot distinguish. This en-
sures that in the simulation, there is as much “uncer-
tainty” as in the “simulated world,” i.e., knowledge is
transferred from C2 to C1. When removing the knowl-
edge operator from the language, requiring knowledge
transfer is unnecessary.

• Z−1 needs to be a function to allow precise statements
about the involved probabilities; this is used in the
proof of Theorem 4.1 in an essential way. This re-
quirement can be omitted in the deterministic case.

Simulations allow to transfer strategies in the canonical
way. We show the following theorem:

Theorem 4.1. Let C1 and C2 be CGSs, let A be a coali-
tion, and Z a probabilistic uniform strong alternating sim-
ulation for A from C1 to C2. Then for all strategy choices
S1 for A in C1, there is a strategy choice S2 for A in C2

such that for all formulas ϕ for C1/C2 with ag(ϕ) ⊆ A, and
for all pairs (q1, q2) ∈ Z, it holds that C1, S1, q1 |= ϕ iff
C2, S2, q2 |= ϕ.

The above theorem should not be read as stating that
C1 and C2 are “strategically equivalent:” this is only the case
when there are simulations in both directions. The construc-
tion used in the proof is the canonical one arising from the
definitions; the complexity of the description of S2 is the sum
of the complexities of the descriptions of S1, the simulation
Z, and the associated move transfer function Δ1→2

... .

4.2 Discussion of Simulation Properties
Due to space reasons, we do not give a detailed example of

a simulation, but only a generic one: We state the following
trivial result, which on first sight may be surprising:

Proposition 4.2. For every CGS C and every coalition
A, there is a probabilistic uniform strong alternating simu-
lation for A from C to Chst.

A (false) way of reading the above is that C and Chst are
strategically equivalent. However, this is completely incor-
rect: A probabilistic uniform strong alternating simulation
allows to transfer a strategy choice (see Theorem 4.1), but
since the translation is only in one direction, no equivalence
is obtained. Hence Proposition 4.2 merely states that if a

group of agents has agreed on a set of joint strategies to
achieve their respective goals in the basic CGS C, then they
are free to apply the same strategies even if they are given
the additional ability to remember the history of the game,
thereby ignoring this capability. Stated in this way, Propo-
sition 4.2 is entirely unsurprising. In particular, it does not
state that with the additional capabilities, the agents could
not achieve more in Chst than in the original CGS C.

q0

q1

q2

a:0

a:1

Figure 3: Example

As an example, consider the
CGS C with three states q0, q1, q2,
where in q0, the agent can freely
choose whether the successor
state should be q1 or q2, and
from the latter two states, ev-
ery move leads back to q0. As-
sume that the only agent a in the
game has complete information.
Now consider the formula ϕ =
〈〈a〉〉 �(�q1 ∧ �q2). There is no
strategy (and hence no strategy
choice) satisfying ϕ in C: When
following a (memoryless) strat-
egy, a has to make the same move every time the game is in
q0, and hence only one of the states q1, q2 is visited infinitely
often. In the history-dependent version Chst, the agent re-
members the choice made last time, and can act accord-
ingly. This not only shows that (as is well-known) history-
dependent strategies are strictly stronger than memoryless
ones, but also implies that in general, there is no probabilis-
tic uniform strong alternating simulation from Chst to C, i.e.,
the converse of Proposition 4.2 does not hold.

We now show that simulations between CGSs canonically
transfer to their history-dependent versions. This implies
that it is sufficient to specify a simulation between history-
dependent CGSs C1

hst and C1
hst on their memoryless cores

C1 and C2 (if a simulation exists between these).

Proposition 4.3. If there is a probabilistic uniform strong
alternating simulation for a coalition A from C1 to C2, then
there also is one from C1

hst to C2
hst.

Again, the converse does not hold: For every CGS C, the

structures Chst and Chsthst
are essentially identical, in par-

ticular there is a probabilistic uniform strong alternating

simulation from Chsthst
to Chst, but due to the above there

is not necessarily a simulation from Chst to C.
Finally, we mention a successful application of our no-

tion of simulation: In parallel work, it has been shown that
the game structures naturally arising when studying certain
families of cryptographic protocols are infinite, but can be
simulated by a finite structure. This result was then used
to show that model checking for certain security properties
of protocols is decidable, and that the involved strategies
always have a finite representation.

5. COMPLEXITY AND DECIDABILITY
Strategy choices represent agreement of a coalition prior

to a game: The coalition has to decide on a suitable strategy
for every relevant goal, these strategies are then pooled in
the strategy choice. Hence the “planning” of suitable strate-
gies consists of determining a strategy choice achieving these
goals for a given a CGS and a set of goals. In this section, we
study the computational complexity of this problem. This
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situation is an example for the approach known as planning
as model checking, see also [8]. Formally, we consider the
following decision problems—depending on whether we al-
low all strategy choices or are only interested in maximal
ones (see Section 3.3). We note that our decision algorithms
are constructive.

Problem: ∃Choice (∃maxChoice)
Input: A CGS C, a state q of C, a state-formula ϕ
Question: Is there a (≤ϕ-maximal) strategy choice S

for ag(ϕ) in C such that C, S, q |= ϕ?

For studying the complexity of these problems, we as-
sume that the transition function is specified as a complete
table. For finite structures, the model checking problem is
decidable, where the complexity in the deterministic case is
considerably lower than in the probabilistic setting:

Theorem 5.1. ∃maxChoice and ∃Choice are

1. PSPACE-complete for deterministic structures,

2. solvable in 3EXPTIME and 2EXPTIME-hard for prob-
abilistic structures.

The above and the result from Schobbens [16] that model
checking for memoryless ATL∗ is PSPACE-complete, shows
that the model-checking complexity of our semantics comes
at no additional cost compared to that of standard ATL∗

with memoryless strategies in the deterministic setting (re-
call that due to Proposition 3.1, our semantics are a gener-
alization of memoryless ATL∗). As expected due to results
from Courcoubetis and Yannakakis [5], model checking for
the probabilistic case is significantly more complex.

The situation is different for history-dependent strate-
gies: Let ∃Choicehst and ∃Choicehst be the variations ob-
tained from ∃Choice and ∃maxChoice by asking whether a
corresponding strategy choice exists in Chst. These prob-
lems are undecidable, although the analogous problem is
2EXPTIME-complete for standard ATL∗:

Theorem 5.2. ∃Choicehst and ∃Choicehst are undecidable
for the deterministic and the probabilistic case.

6. CONCLUSION
We have considered the situation in which a coalition A

agrees on a set of strategies prior to the game, which are
collected in a strategy choice, and can be identified and fol-
lowed using only the information that is available to the
agent. In the evaluation of the success probability of such
a set of strategies, we adopted the usual pessimistic con-
vention that the remaining agents follow their best-possible
strategy, which is allowed to use information not available
to the coalition A (including being allowed to be history-
dependent). It would be interesting to relax this worst-case
assumption and assume that the counter-coalition also has
only bounded resources available.

Further, mixed strategies are an interesting issue. Note
that a basic form of mixed strategies is possible in our se-
mantics: One can introduce intermediate states in which the
next move by an agent is chosen at random, where the prob-
ability distribution may be different in each state. Hence the
agents may be given a certain amount of control over the dis-
tributions. However, a general treatment of mixed strategies
remains open.
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[9] W. Jamroga and T. Ågotnes. What agents can achieve
under incomplete information. In Nakashima et al.
[14], pages 232–234.

[10] W. Jamroga and W. van der Hoek. Agents that know
how to play. Fundamenta Informaticae,
63(2-3):185–219, 2004.
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